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The capillary distribution function over radius f(r) is one of the basic characteristics 
of a porous medium defining its filtration properties. Among the known methods of finding 
f(r) the most widely used is the mercury porometry method [i]. Some imperfections of that 
method were noted in [2] and an alternative was proposed - electroporometry. However the 
latter is also not free of shortcomings. First, there is the intrinsic error of the method, 
related to use of an effective medium model which is the limiting case of the precise perco- 
lation model and describes medium properties well only far from the percolation threshold, 
introducing an error of ~20% into parameter calculations near that threshold [3]. This leads 
to a narrowing of the radius range over which f(r) can be reliably determined. Second, quite 
large specimens with a large vertical dimension (~i m) are required to obtain experimental 
data, many times the size of rock specimens normally studied. 

These shortcomings can be overcome by use of a combined method permitting use of the pos- 
itive features of both techniques - the mercury electroporometry method. The essence of the 
method is acquisition of experimental data on the change in electrical conductivity of the 
specimen when it is filled with a nonwetting electrically conductive liquid with simultaneous 
measurement of pump pressure and subsequent processing of the data to find f(r). The present 
study will construct and validate an algorithm for finding the function f(r) for such an ap- 
proach and demonstrate its effectiveness by calculating model problems. 

Study of the change in specimen electrical conductivity as it becomes saturated, in con- 
trast to determining the change in volume of mercury pumped into the specimen under pressure 
as in the traditional mercury porometry method, will directly provide information on the sys- 
tem of conductive pore channels rather than the integral void system in the material [2]. At 
the same time use of a nonwetting conductive liquid pumped into the medium under pressure 
eliminates the problem of specimen size. The most natural liquid to use for this purpose is 
mercury. As for the mathematical processing of the experimental data which is required, as 
compared to [2] it can be accomplished using a percolation model of transport processes [4] 
instead of the approximate effective medium model. 

The method used for determining electrical conductivity of the medium o consists of the 
following. A specimen with cross sectional area S and height s is placed into a volume with 
mercury, which is forced into the specimen under a pressure P. We pass a current I through 
the specimen and measure the voltage drop U across it, then find its resistance R = U/I and 
electrical conductivity o = ~S-IR -~. By performing a series of such measurements at various 
pressures {Pi} and arranging them in correspondence with the minimum capillary radius r i = 
2y cos @/Pi, given by the Laplace formula, into which the mercury can penetrate, we obtain the 
function o(ri). Here y is the surface tension coefficient on the mercury-air boundary, @ is 
the mercury wetting angle on the pore channel surfaces, whereupon the function o(ri) can 
either be represented by an interpolation curve or tabulated for subsequent performance of 
numerical calculations by computer. 

In accordance with [4] the values of o(r i) can be calculated theoretically for a known 
f(r): 

A / (~) (=) d= 
~ ~ ( 1 )  (~) = 

S /  r -2  dr ('0 
X 

where A is a numerical coefficient [4], r c is the critical flow radius, determined by the 
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condition 

t l ( O d r  = p~ (2) ,J 

t C 

(Pc is the percolation threshold for the chosen lattice modeling the pore space, v is the 
correlation radius index [4, 5]). 

If we consider the function o(ri) known, and f(r) unknown, then Eq. (i) is a nonlinear 
integral equation in f(r). Differentiating that expression once with respect to r i and per- 
forming obvious transformations, we have 

!("0 = - 

0o 

: lr l ,  2.r 

r i  

] (r) dr i (r) dr 
Lr~ r i 

(3) 

Or, introducing the notation 

)~ (r~) = A / ( r )  dr ] (r) dr , 

z (x) = 7 ] (r) r - 2 d r ,  Zc = z (r~), ~ (r~) = z ~  (r~), 
x 

(4 

We obtain a nonlinear inhomogeneous Volterra equation of the second sort in standard form 

r C 

] ( r i )  = X (r~) j ' i ( r )  r - 2 d r  + ~ (ri). 
r7 

(5 

Commencing from both the physical meaning of the percolation model of transport pro- 
cesses in an inhomogeneous medium, as well as directly from analysis of Eq. (3), it can easily 
be seen that it, and consequently, Eq. (5), are valid over the range 0 < r i < r c. 

In measuring a(ri) there may be segments r i < r < r i + A i in which the conductivity of 
the medium does not change, i.e., do(ri)/dr i = 0. If A i does not include rc, then in such 
intervals X(ri) =@(ri) = 0, which according to Eq. (5), leads to f(ri) = 0 at r i < r < r i + 
g i. This implies that the medium does not have capillaries with r i e A i. If some A i in- 
cludes a segment with rc, then, substituting X(ri) = ~(ri) = 0 in Eq. (5), we also obtain 
f(r i) = 0. Since in Eq. (4) the integral of f(r) is in the denominator, we formally have a 
zero by zero indeterminacy. However the equality do/dr i = f(ri) = 0 near the initially in- 
troduced r c merely implies absence of capillaries with r i close to r c. Therefore it is suf- 
ficient to decrease r c down to the closest r i for which do/dr i r 0 and take this value for a 
new rc, which does not change the meaning or content of all the expressions and avoids the 
formal indeterminacy. Such cases are found only in media having a function f(r) with two 
global maxima, i.e., having two different forms of porosity (for example, media with block 
and interblock pores or in cavernous-fissured rock). 

Considering the new definition of rc, we evaluate X(ri) and ~(ri). 

With consideration of the limitation 0 ~ f(r) J M < = from Eqs. (i) and (4) we have 

Ido(ri):dri] ~ A(f -- p~)VM/z~,  

I Z ( r ~ ) l ~ \ ~ )  \ _%6 ) I 

(6) 

Here N c is the mean value of f(r) in the first interval r c - rl (r c - r~ m 6). 
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Fig. 1 

Since for an integral Volterra equation of the second sort the principle of constringent 
transformations is valid for any finite X and q) [6], Eq. (6) makes possible positive solution 
of the question of existence and uniqueness of the solution of Eq. (5), as well as the valid- 
ity of using for its determination the method of successive approximations with arbitrary 
initial function F(~ 

Then, having the n-th approximation the normalized function f(n)r, to obtain the next 
approximation we initially consider in Eq. (5) the unnormalized value 

?'c 
/~n+l) (ri) ----- )00 (ri) ~ j~n)(r) r -~ dr -5 ~p(n)(r), 

ri 
( 7 )  

and then normalize 

/ o~ \--i 

#n+l) (r) C(n_i_l) ( !  /(On+l) (r) dr ) F +'> (r )  = ' = (8) 

Use of Eqs. (2), (4), (7), (8), where the function o(ri) is considered known from ex- 
periment, allows determination of f(r) over the interval 0 5 r ! r c - 6. For r > r c - 6 the 
function f(r) cannot be determined directly within the framework of the given approach, since 
"pressure scanning" becomes impossible due to disintegration of the infinite cluster. Cer- 
tain a priori assumptions are required as to the behavior of f(r) in this region, where in the 
great majority of cases, it decreases monotonically. We may assume that at r > r c - ~ f(r) ~ 

r -k, where k > i. Then, for example, for the case k = 2 with consideration of Eq. (2) we 
write 

J(r)=po(r~--~)r  -~, r o - - 6 < r < ~ .  (9) 

Correspondingly the quantity z, also defined in the range r - 6 < r < ~, must be calculated 
on the basis of an expression of the type of Eq. (9). In the example presented z c = (pc / 
3)(r c - 6)-2. 

Thus, Eqs. (2), (4), (7)-(9) form a complete algorithm for determining f(r) from the 
experimentally known function o(ri). To verify its operation model calculations were per- 
formed on a computer. The initial data used were functions o(ri), obtained by direct calcu- 
lations with Eq. (i) for specified fi(r). These functions were then reconstructed by the 
iteration procedure described, and the f(r) distributions thus found compared to the original 

fi(r). 

In all cases the function f(~ = const was used as the zeroth approximation. The 
calculations showed that the iteration process converged quite rapidly, with 5-10 iterations 
being required. With proper choice of the function f(r) in Eq. (9) the reconstructed and 
initial f(r) coincided quite well (~0.1%). Introduction of significant error into Eq. (9), 
and thus, into the quantity z c leads to distortion of f(r) near rc(~50%). However on the 
whole the function f(r) is also reconstructed satisfactorily in this case, most accurately 
in the range of small r, which is of special importance in a number of applications. 

To illustrate the efficiency of the method Fig. 1 shows results of reconstruction for 
two cases: "one-peak" 
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]~(r) = (2r / r~)  e x p [ - - ( r / r J ]  ( % - -  i0  -~ m) 

and the "two-peak" mentioned above 

/ i(r)  = B - l { e x p  [ - - (x  - -  xl)2/E 2 ] + exp [ - - (x  - -  x~)2/E ~ l} 

(x = r/r0, x i = ri/r 0 = 0.4, x 2 = r2/r 0 = 0.8, r 0 = i0 -~ m, ~ = 0.15, B = 2V~Er0) original 
distributions. In both cases the original fi(r) is shown by a solid line, and the recon- 
struction by dashes. The f(r) curves are compared over the interval 0 S r ! r c. To the 
right of r c the function f(r) can be joined to the point c with a power function f(r) ~ r -k, 
as noted above. 
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